Basis Vectors

I want you to imagine the origin and 2 random vectors \mathbf{u} and \mathbf{v} starting at the origin (it is important that \mathbf{u} and \mathbf{v} don't lie on the same line). As already discussed in the section about vectors, the two operations that all vectors necessarily have are:

1) Multiplication by a constant, aka scaling.
2) Addition.

The result of the above operations is always a vector.
In your mind I want you to perform those two operations on \mathbf{u} and \mathbf{v} in many possible crazy ways. For example, $2 \mathbf{u}-3 \mathbf{v}$ or $-0.5 \mathbf{u}$ or $-5 \mathbf{u}+4 \mathbf{v}$, etc. I have tried first 2 and here is what I get:

Definition: An expression constructed from a set of vectors by using the 2 operations above is called a linear combination.

For example, $-5 \mathbf{u}+4 \mathbf{v}$ is a linear combination of \mathbf{u} and \mathbf{v}.
Do you see that every vector in the plane where \mathbf{u} and \mathbf{v} lie can be obtained by applying those two operations to \mathbf{u} and \mathbf{v} ? If you are not 100% convinced, take a look at the following picture where I managed to approximately represent a random vector \mathbf{w} on the plane as a linear combination of \mathbf{u} and \mathbf{v}.

What if \mathbf{u} and \mathbf{v} lie on the same line? In this case it is impossible to obtain a vector that is not on the same line using the operations above.

Before taking a look at the definition of basis vectors take a look at the following examples.

Example:
Imagine a 2 dimensional plane passing through the origin. As we just saw, every vector in this plane can be represented as a linear combination of 2 vectors that don't lie on the same line.

Example:

Imagine a line passing through the origin and a random vector \mathbf{w} on a line. I think that it is not difficult to see that if you scale v appropriately, you can get any vector on that line.

Note:
In math literature 2 dimensional plane can be referred to as 2 dimensional vector space and a line can be referred to as 1 dimensional vector space.

Definition:
A set of vectors in a vector space is called a basis if every other vector in that vector space can be uniquely represented as a linear combination of that set of vectors.

In the examples above, \mathbf{u} and \mathbf{v} (if they don't lie on the same line) are the basis vectors of 2 dimensional vector space (plane) and \mathbf{w} is a basis vector of 1 dimensional vector space (line).

